# Internal Displacement Reactions in multi-component Oxides.

S.N.S.Reddy<sup>1</sup>, D.Leonard<sup>1,2</sup>, L.B.Wiggins<sup>1</sup> and K.T.Jacob<sup>3</sup>

<sup>1</sup> IBM Corporation Systems & Technology group Hopewell Junction, NY 12533

- <sup>2</sup> Dept. of Materials Science North Carolina State University Raleigh, NC 27695
- <sup>3</sup> Dept. of Metallurgy Indian Institute of Science Bangalore – 5600 12, India

## Introduction:

Internal displacement reactions in multi-component Oxides:

Redox reaction inside an oxide matrix.

A (metal) + (B,C,...)O (oxide) = "B" (metal) + "(A,C,...)O" (oxide) (No published studies)

Internal displacement reaction inside a metal matrix

Nickel matrix:  $3 \text{ MoO}_2 + 4 \text{ Cr} = 2 \text{ Cr}_2 \text{O}_3 + 3 \text{ Mo}$ 

(Shook, Rapp & Hirth, Met.Trans., v.16A, 1985)

#### **Related internal reactions:**

Internal Oxidation / Reduction in a matrix

- Metal matrix: (A,B) oxidation → A (matrix) + BO (ppt) (Well known in literature)
- Oxide matrix : (A,B)O  $\xrightarrow{\text{oxidation}} \rightarrow AO$  (matrix) + B<sub>2</sub>O<sub>3</sub> (ppt)
  - $(A,C)_2O_3 \xrightarrow{\text{reduction}} A_2O_3 \text{ (matrix)} + CO \text{ (ppt)}$

H.Schmalzried & M.Backhaus-Riccoult, Prog.Solid St.Chem., v.22, 1993

#### **Internal displacement reactions:**

#### **OXIDE MATRIX :**

(a) Oxide "line" compounds of narrow composition width:

 $A + BCO_{m+n} = "B" + "ACO_{m+n}"$ 

[ Oxide line Compound  $\Rightarrow$  Ratio, (B:C) = (A:C) = {(A+B):C} = constant ]

(b) Oxide solid solutions of wide composition range:

 $x A + (B_x C_{1-x})O = x "B" + "(A_x C_{1-x})O"$ 

[  $x \Rightarrow$  wide range of values ]

Common features:
Cation exchange reaction (B → A) and precipitation of B in oxide matrix.

- C is "inert" for cation exchange reaction.
- No change in Oxide crystal structure.
- Concentration gradients in product phases
- Oxygen sub-lattice is rigid:  $\mathcal{D}_{cation} >> \mathcal{D}_{O}$

( Oxide is an electronic conductor  $\Rightarrow t_{e} \approx 1$  )

### Reactions in an oxide "line" compound

A (metal) + BCO<sub>*m*+*n*</sub> (oxide) = "B" (metal) + "ACO<sub>*m*+*n*</sub>" (oxide)

"line" compound  $\rightarrow$  (A:C) = (B:C) = {(A+B):C} =constant}  $\rightarrow$  separate sublattice for (A,B) & C



Fig.1. Oxides system for internal displacement reaction between a metal and an oxide "line" compound.

#### Displacement reaction in ilmenite structure:

 $Fe + NiTiO_3 = "Ni" + "FeTiO_3"$ 

∆G<sup>0</sup><sub>1273K</sub> ≈ - 66 kJ /mole

#### OXIDE: Ilmenite Structure – derivative of Corundum ; Alternating sheets of Ni<sup>2+</sup>/Fe<sup>2+</sup> and Ti<sup>4+</sup> (two seperate cation sublattice) (Ni,Fe)TiO<sub>3</sub> Solid Solution; Ratio, (Ni+Fe):Ti = 1:1

(Point defects & Diffusion in Ilmenite at reaction T: No data)







Periodic precipitation of  $\gamma$  – (Ni,Fe) alloy ; Liesegang phenomenon { $(x_n + \Delta x_n)/x_n = x_{n+1}/x_n = k$  }?  $\Rightarrow$  Linear increase of spacing with band number ?



Distance from Fe / reaction zone boundary,  $\mu m$ 

Fig.10. EPMA analysis of Oxide Composition in the product zone for the reaction between Fe and single crystal NiTiO<sub>3</sub> at 1273 K ; time = 49 hrs.(Note: EPMA points deviate from ilmenite composition by about 6% --due to machine calibration; the lines are drawn for eye recognition purpose only) Internal displacement reaction in an oxide solid solution:

 $x A \text{ (metal)} + (B_x C_{1-x})O \text{ (oxide)} = x "B" \text{ (metal)} + "(A_x C_{1-x})O" \text{ (oxide)}$ 

(A,B,C)O --- solid solution in the entire composition range.

A,B,C --- Occupy the same cation sub-lattice.

C ---- "Inert" for cation exchange ;  $\Delta G_{CO}^{0} < \Delta G_{AO}^{0} < \Delta G_{BO}^{0}$ 





#### Model reactions in oxide solid solutions:

# $x \operatorname{Fe} + (\operatorname{Ni}_{x} \operatorname{Mg}_{1-x})O = x "\operatorname{Ni}" + "(\operatorname{Fe}_{x} \operatorname{Mg}_{1-x})O"$ $x \operatorname{Fe} + (\operatorname{Co}_{x} \operatorname{Mg}_{1-x})O = x "\operatorname{Co}" + "(\operatorname{Fe}_{x} \operatorname{Mg}_{1-x})O"$

Point defect structure in Oxide: Cation Vacancies,  $V_M = f(x, p_{o2}, T)$ 



"Up-hill" diffusion of Mg.

Gradient in (Fe<sup>2+</sup> / Fe<sup>3+</sup>) ratio  $\Rightarrow$  effect on J<sub>Fe</sub>?



T = 1273 K



Fig.8. Cross sectional view of the reaction zone between Fe and  $(Ni_x Mg_{1-x})O$  at 1273 K. (a) x = 0.7, t = 12 h; (b) x = 0.5, t = 9 h; (c) x = 0.3, t = 25 h; (d) x = 0.2, t = 49 h.

### Fe + (Co<sub>0.5</sub> Mg<sub>0.5</sub>)O = "Co" + "(Fe<sub>0.5</sub> Mg<sub>0.5</sub>)O

#### T = 1273 K



Fig 9. Displacement reaction between Fe and  $(Co_{0.5}Mg_{0.5})O$  at 1273 K. (a) 16 hrs; (b) 62 hrs.

# Is the precipitation *"periodic"* for reactions in Single Crystal Oxide Solid Solutions ?



Distance from Fe/reaction zone interface, µm

Fig.9. Composition of the product phases for the internal displacement reaction between Fe and (Co<sub>0.5</sub>Fe<sub>0.5</sub>)O at 1273 K and 62 hrs. (Lines are for eye-recognition only)

Reaction in solid solutions of "line" compounds:

Fe +  $(Ni_{0.5} Mg_{0.5})TiO_3 = "Ni" + "(Fe_{0.5} Mg_{0.5})TiO_3"$ ( "Inert" cations : Mg & Ti )

Cation sub-lattice(i) : Ni, Mg & Fe Cation sub-lattice(ii) : Ti } Ilmenite structure (Fe+Ni+Mg):Ti = 1:1

Net Cation flux:  $J_{Fe}$ ,  $J_{Mg} \rightarrow$  reaction front;  $J_{Ni} \rightarrow$  Fe / boundary;  $J_{Ti}$ =0



Fig.8. EPMA analysis of product oxide composition for the reaction between Fe and  $(Ni_{0.5}Mg_{0.5})TiO_3 \cdot T = 1273 \text{ K}$ ; time = 100 hrs.

(lines are for eye recognition only)

#### Summary

(i) Oxide "line" compounds of narrow composition width:

Model reaction:  $Fe + NiTiO_3 = "Ni" + "FeTiO_3"$ 

--- periodic precipitate of (Ni-Fe) alloy; Gradients in N<sub>Fe</sub> & N<sub>Ni</sub>.

--- Product oxide, "FeTiO<sub>3</sub>" : (FeTiO<sub>3</sub> – NiTiO<sub>3</sub>) solid solution. Gradients in N<sub>Fe</sub> & N<sub>Ni</sub>. (Ni+Fe) : Ti = 1:1

--- Net cation flux in product oxide:

 $J_{Fe} \rightarrow$  reaction front ;  $J_{Ni} \rightarrow$  Fe / boundary ;  $J_{Ti} = 0$ .

(ii) Oxide solid solutions of wide composition range:

Model Reactions: Fe +  $(Ni_xMg_{1-x})O = "Ni" + "(Fe_xMg_{1-x})O"$ Fe +  $(Co_xMg_{1-x})O = "Co" + "(Fe_xMg_{1-x})O$ 

--- "Ni" = (Ni-Fe) ; "Co" = (Co-Fe) ; Composition gradients.

--- "(Fe<sub>x</sub> Mg<sub>1-x</sub>)O" : (Fe,Mg,Ni or Co)O solid solution.

--- Net Cation Flux:  $J_{Fe}$ ,  $J_{Mg} \rightarrow$  reaction front ;  $J_{Ni \text{ or } Co} \rightarrow$  Fe / boundary ;

- Internal displacement reactions are useful to synthesize Metal-ceramic composites with unique structures.
- Only qualitative nature of diffusion in oxides can be obtained from a study of these reactions.